In mathematics, a natural number a is a unitary divisor of a number b if a is a divisor of b and if a and are coprime, having no common factor other than 1. Thus, 5 is a unitary divisor of 60, because 5 and have only 1 as a common factor, while 6 is a divisor but not a unitary divisor of 60, as 6 and have a common factor other than 1, namely 2. 1 is a unitary divisor of every natural number.
Equivalently, a given divisor a of b is a unitary divisor iff every prime factor of a has the same multiplicity in a as it has in b.
The sum of unitary divisors function is denoted by the lowercase Greek letter sigma thus: σ*(n). The sum of the k-th powers of the unitary divisors is denoted by σ*k(n):
If the proper unitary divisors of a given number add up to that number, then that number is called a unitary perfect number.
Contents |
The number of unitary divisors of a number n is 2k, where k is the number of distinct prime factors of n. The sum of the unitary divisors of n is odd if n is a power of 2 (including 1), and even otherwise.
Both the count and the sum of the unitary divisors of n are multiplicative functions of n that are not completely multiplicative. The Dirichlet generating function is
The sum of the k-th powers of the odd unitary divisors is
It is also multiplicative, with Dirichlet generating function
A068068 is σ(o)*0(n). A192066 is σ(o)*1(n).
|